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Abstract. A comparative analysis of harmonic and biharmonic boundary-value problems for 2D problems on a
rectangle is given. Some common features of two types of problems are emphasized and special attention is given
to the basic distinction between them. This distinction was thoroughly studied for the first time by L. N. G. Filon
with respect to some plane problems in the theory of elasticity. The analysis permits to introduce an important
aspect of the general solution of boundary-value problems. The procedure for solving the biharmonic problem
involves both the method of homogenous solutions and the method of superposition. For some cases involving
self-equilibrated loadings on one pair of sides of the rectangle, the complete solution, including calculation of the
quantitative characteristics of the displacements and stresses, is given. The efficiency of the numerical implemen-
tation of the general solutions is shown. The analysis of the quantitative data allows to elucidate some main points
of the Saint-Venant principle.
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1. Introduction

Despite the increasing role of numerical methods for solving boundary-value problems aris-
ing in the mathematical modelling of engineering problems, the development of analytical
approaches to the solution of complex boundary-value problems remains important in engi-
neering mathematics. In the long history of mathematical physics the study of boundary-value
problems for the Laplace equation (static harmonic problems) and the Helmholtz equation
(wave harmonic problems) has played a special role. In the development of methods for the
solution of such boundary-value problems, general approaches to the construction and analysis
of analytical solutions of boundary-value problems were given. An orderly theory of higher
transcendental functions was created for the analytical representation of solutions of other
types of boundary-value problems [1, Chapter 10].

However, the transition to problems described by partial differential equations of higher
order frequently leads to particular mathematical difficulties. The clearest illustration of this
statement is perhaps given by a comparative analysis of harmonic and biharmonic boundary-
value problems. Some results of such an analysis will be presented in this paper, basically, with
reference to two-dimensional problems. The famous Filon paper [2] was the first to attract the
attention of the scientific community to the important difference between the two classes of
boundary-value problems. The never-decreasing interest in boundary-value problems for the
biharmonic equation can be attributed to a series of reasons. Within the framework of prob-
lems in classical mathematical physics, a comparative analysis of harmonic and biharmonic
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problems illustrates those principal mathematical difficulties which result from increasing the
order of the equation.

At first it seems that boundary-value problems for the biharmonic equation can be solved
by the same methods as developed for harmonic problems. This belief motivated Kolosov [3]
and Muskhelishvili [4] to present their highly acclaimed solution of the biharmonic equation
in terms of two analytic (harmonic) functions. The central idea of the very popular book
by Muskhelishvili consists in underlining the likeness of harmonic and biharmonic problems.
The classical theory of analytical functions leads to a practically complete solution of a general
harmonic boundary-value problem.

Although in many respects the theory of biharmonic problems in terms of the theory of ana-
lytical functions is quite elegant, a consideration of boundary-value problems for rather simple
domains has shown a sharp distinction between these two types of problems. The meaning of
this general statement becomes especially clear when comparing difficulties of the solution
of 2D harmonic and biharmonic boundary-value problems on a rectangular domain. These
problems will be used to illustrate one of the basic ideas developed for the construction of
the solution of biharmonic boundary-value problems. A complete review of the history of the
different approaches to biharmonic boundary-value-problem solutions is given by Meleshko
[5].

Historically, the interest in biharmonic problems was also stimulated by important en-
gineering problems. Brilliant calculations of the stresses in a clamped rectangular elastic
plate were done by the Russian naval architect Bubnov [6]. The analysis of the results of
these calculations has motivated the development of mathematical methods for biharmonic
problems. Stimulated by the solution of boundary-value problems for the biharmonic equa-
tion [7], a development of the theory of infinite systems of linear algebraic equations has
turned out to be extremely important for the development of methods of solution for many
problems in mathematical physics. Indeed, in solving biharmonic boundary-value problems,
new concepts in the theory of boundary-value problems for partial differential equations have
been formed. One such new concept, namely the general solution of boundary-value problems
will be considered in this paper.

The paper is organized as follows. The analysis of the procedure used to obtain the com-
plete solution of the harmonic problem on a rectangle is given in Section 2. It is shown that
the solution of this problem can be presented in various forms, which can be used to satisfy
the boundary conditions. In Section 3 properties of different systems of partial solutions of
the biharmonic equation are considered. The solutions, giving potentially the possibility to
get the complete solution for the boundary-value problem on a rectangle, are constructed. The
corresponding choice of such solutions gives a method for constructing the general solution of
the boundary-value problem. To analyse the properties of such solutions, a short description of
homogenous solutions is given in Section 4. A numerical implementation of the general solu-
tion for concrete boundary conditions (Section 5) permits to discuss important features of the
method. Specific numerical data are of interest to the understanding of important peculiarities
of the Saint-Venant principle.

2. Analysis of the solution of the harmonic boundary-value problem on a rectangle

The main point of the problems tackled by Filon, by considering boundary-value problems
for an elastic half-strip or a finite cylinder, should be seen in the light of the history of the
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Figure 1. The domain geometry and choice of the coordinate system. Boundaries of the domain are shown by
solid lines. Dashed lines along with part of the boundaries of the given domain form another rectangle which
encloses the given area.

development of methods of mathematical physics. Prior to Filon, attention was given mainly
to the development of methods for solving boundary-value problems in potential theory. The
Sturm-Liouville theory for systems of eigenfunctions of second-order differential operators
had been developed for that purpose. Use of such functions provides a methodology to obtain
elegant closed solutions of boundary-value problems in potential theory in the separable coor-
dinate systems for canonical domains. For these domains their boundary is formed by parts of
coordinate surfaces (lines). To construct closed-form solutions of harmonic boundary-value
problems for canonical domains, a special procedure is used. The specific features of this
procedure are illustrated by a 2D example.

To show some important features for a subsequent generalization of the solution of har-
monic problems, let us consider a very simple two-dimensional Dirichlet problem for the
Laplace equation in a rectangular domain. The geometry of the domain and the coordinate
system are shown in Figure 1.

It is necessary to find a function ϕ(x, y) satisfying the Laplace equation

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
= 0 (1)

in the domain −a ≤ x ≤ a, −b ≤ y ≤ b and boundary conditions at the boundaries of the
rectangle

ϕ(x,±b) = F1(x), ϕ(±a, y) = F2(y). (2)

To illustrate the basic features of the classical approach towards the solution of the boundary-
value problem, it is sufficient to consider the case of a function ϕ, that is even in both
coordinates, with even functions in the boundary conditions (2): F1(x) = F1(−x), F2(y) =
F2(−y).

A remarkable property of the harmonic equation (1) is the possibility to represent its solu-
tion in the form of a product of functions of x and y. This is a remarkable property which many
equations of mathematical physics have in so-called separable coordinate systems. According
to the procedure of separation of variables, we shall present the harmonic function sought as
a product ϕ(x, y) = X(x)Y (y). For some arbitrary constant λ2 it is possible to obtain from
Equation (1) two separate equations for the required functions

d2X

dx2
− λ2X = 0,

d2Y

dy2
+ λ2Y = 0. (3)



284 V. T. Grinchenko

The solutions of these simple equations are well known. It is important to realize that the prod-
uct of the functions X(x) and Y (y) provides a particular solution of the harmonic Equation (1)
for arbitrary (real, imaginary or complex) values of the constant λ2. This approach allows one
to construct sets of particular solutions by a choice of special values of the separation constant.
Now one can propose a constructive way to obtain the solution of the boundary-value problem
(2). We have to construct such sets of particular solutions of the harmonic equation, which
undoubtedly allow us to satisfy the boundary conditions (2). As the boundary conditions are
defined for constant values of one of the coordinates, this problem is simply solved for many
domains within the framework of the Sturm-Liouville theory.

Let us consider the boundary conditions at y = ±b. To satisfy the corresponding conditions
in (2) the harmonic function sought must contain at y = ±b the complete set of functions
with arbitrary coefficients. It is not difficult to construct such a solution. Taking for λ in
Equations (3) the following values

λ = iαn, αn = nπ

l
, l > a, (4)

we obtain the solution of the harmonic equation as

ϕI =
∞∑

n=0

An cos αnx cosh αny. (5)

Here An are arbitrary constants. The symmetry properties of the field were taken into account
when constructing particular solutions of Equations (3).

It is obvious that expression (5) satisfies term by term the harmonic equation and includes
a complete set of functions at the surfaces y = ±b, a ≤ x ≤ a. Choosing proper values of the
arbitrary constants An, we can satisfy the boundary conditions on the sides y = ±b of rectan-
gle. The procedure for the actual determination of the constants An will be especially simple
for the following two values of the separation constant αn = nπ/a or αn = (2n + 1)π/(2a).
For these two cases the sets of functions cos αnx are not only complete, but also orthogonal
on the interval −a ≤ x ≤ a. The two series (5) corresponding to two given sequences
of separation constants αn have important properties. They not only give the possibility to
satisfy boundary conditions on the surfaces y = ±b, but also satisfy homogeneous boundary
conditions at the surfaces x = ±a, correspondingly for the function or its normal derivative.
Such special solutions of the boundary-value problems were called homogeneous solutions.

One can see that the series

ϕII =
∞∑

m=0

Bm cos βmy cosh βmx (6)

is a solution of the harmonic equation which can satisfy boundary conditions on the sides
x = ±a. As to βm one can repeat the comments concerning the parameters αn. The best way
to simplify the solution of the boundary-value problem is to use the homogeneous solution
with βm = mπ/b. Thus, the general solution of the boundary-value problem (2) is the sum of
the two homogeneous solutions, namely

ϕ = ϕI + ϕII =
∞∑

n=0

An cos αnx cosh αny +
∞∑

m=0

Bm cos βmy cosh βmx,

(αn = nπ/a, βm = mπ/b). (7)
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In this case actual fulfillment of the boundary conditions is reduced to the solution of a
sequence of algebraic equations with one unknown:

A0 = 1

2a

a∫
−a

F1(x)dx, An = 1

a

a∫
−a

F1(x) cos αnxdx,

B0 = 1

2b

b∫
−b

F2(y)dy, Bm = 1

b

b∫
−b

F2(y) cos βmydy.

(8)

Such a simple result is a consequence of the fact that the considered harmonic problem has
simple homogeneous solutions. For other possible choices of the parameters αn and βm, the
unknown coefficients in the solutions ϕI and ϕII have to be determined from an infinite set of
algebraic equations.

The very simple boundary-value problem considered above gives the possibility to explain
solution procedures for general boundary-value problems. Our example shows that this notion
is more general than the homogeneous solutions of boundary-value problems. We will succeed
in constructing an analytical solution of a boundary-value problem. It is important to note that
every concrete problem has a number of general solutions. Practically we can use the form
of solution that affords the simplest procedure of boundary-condition fulfillment. In the case
of the harmonic problem this gives a way to obtain a homogeneous solution. But for other
problems the situation looks more complicated.

At the same time the discussion shows that there are a lot of different forms of the general
solution of the boundary-value problem. The use of these other solutions is not reasonable for
the problem under consideration, but it is useful to understand more complicated situations as
a basis to generate new approaches. We shall come across more complicated 2D boundary-
value problems for elastic bodies.

To conclude we discuss the physical meaning of the functions φ1 and φ2. The sum of
these functions forms the general solution (7) of the harmonic boundary-value problem on
a rectangle. This fact is useful for understanding the ideas advanced by consideration of
boundary-value problems in the theory of elasticity for bodies of finite size.

3. General solution of the 2D boundary-value problem for an elastic rectangle

Let us consider a 2D problem in elasticity for a rectangular domain (Figure 1). There is a
difference in the physical meaning of two cases concerning a 2D problem in the theory of
elasticity. One can distinguish states of plane strain and plane stress. Mathematically there is
no difference between these two states. For the case where the stress is given on the surface, it
is convenient to use a formulation of the 2D problem involving a stress function ϕ(x, y) that
satisfies the biharmonic equation

∂4ϕ

∂x4
+ 2

∂4ϕ

∂x2∂y2
+ ∂4ϕ

∂y4
= 0. (9)

The components of the stress tensor are determined by

σx = ∂2ϕ

∂y2
, σy = ∂2ϕ

∂x2
, τxy = − ∂2ϕ

∂x∂y
. (10)
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To simplify the calculation, the symmetric stress state of the rectangle will be considered. It
is assumed that the normal and tangent stress components are specified on the sides x = ±a

and y = ±b as follows:

σy(x, b) = F1(x), τxy(x, b) = Q1(x),

σx(a, y) = F2(y), τxy(a, y) = Q2(y).
(11)

The relations

F1(x) = F1(−x), Q1(x) = −Q1(−x),

F2(y) = F2(−y), Q2(y) = −Q2(−y)
(12)

follow from the conditions of stress-state symmetry.
The particular solutions of the biharmonic equation can also be found by separation of

variables. In the light of the harmonic problem discussed in the previous section, one can
construct more simply the general solution of the boundary-value problem. Applying the logic
used to construct the general solution for the harmonic problem, we obtain one part of the
general solution from the following expression for the stresses:

σ (I)
y (x, b) =

∞∑
n=0

An cos γnx, τ (I)
xy (x, b) =

∞∑
n=1

Bn sin γnx, γn = nπ/l, l ≥ a. (13)

Taking into account the expression for the stresses via the stress function, we easily find the
first part of the general solution:

ϕ(I)(x, y) =
∞∑

n=0

cos γnx[an cosh γny + bny sinh γny]. (14)

This part of the solution contains two sequences of arbitrary constants, an, bn, required to
satisfy the boundary conditions on the edges y = ±b. We can use the arbitrary value of the
parameter γn to get a complete set trigonometric functions on these edges. The functions in
terms of the coordinate y are obtained from an ordinary differential equation of the fourth
order. The specific form of the functions corresponds to the symmetry of the stress state.

The second part of the solution is responsible for the fulfillment of the boundary conditions
on the edges x = ±a. The explicit presentation of the stress function is given by

ϕ(II)(x, y) =
∞∑

m=0

cos δmy[cm cosh δmx + dmx sinh δmx], δm = mπ/p, p ≥ b. (15)

Here cm and dm are arbitrary constants. The completeness of the representation of this part of
the general solution exists for arbitrary p ≥ b.

Thus we have obtained the solution

ϕ(x, y) = ϕ(I)(x, y) + ϕ(II)(x, y)

of the biharmonic equation. The process for the construction of the solution allows us to assert
that the series obtained satisfies the biharmonic equation term by term and contain sufficient
functional arbitrariness for the fulfillment of any boundary conditions. The construction proce-
dure of such a solution for the biharmonic equation is not more difficult than for the harmonic
equation.
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Historically the idea used for the construction of the general solution is deeply rooted in
the classical books by Lame [8, Lecture XII] and Mathieu [9, Chapter X]. But difficulties
occurring in the procedure of boundary-condition fulfillment gave a stimulus to a number of
different approaches to study the stress state in a rectangular domain. Many authors proposed
some approximate solution providing a rudimentary answer for applied problems. One such
problem was considered by Filon [10]. He proposed an approximate solution of the problem
of compressing a finite elastic rectangle by concentrated forces. To calculate the stress in the
domain he used only one part of the general solution presented here. This gave the possibility
to satisfy exactly boundary conditions on the loaded surfaces only. The boundary conditions
on the free surfaces were satisfied approximately (according to Saint-Venant’s principle).

The difficulties in solving boundary-value problems for a rectangular elastic body, as met
by Filon and other researchers, illustrates the principal difference between harmonic and bi-
harmonic problems. In spite of the great simplicity of the general solution of the biharmonic
problem given here, it is not possible to get simple homogeneous solutions in the elastic case.
Let us consider the formula for the components of the stress tensor.

σx =
∞∑

n=0

cos γnx[anγ
2
n cosh γny + bnγn(2 cosh γny + γny sinh γny)]−

−
∞∑

m=0

δ2
m cos δmy[cm cosh δmx + dmx sinh δmx],

σy = −
∞∑

n=0

γ 2
n cos γnx[an cosh γny + bny sinh γny]+

+
∞∑

m=0

cos δmy[cmδ2
m cosh δmx + dmδm(2 cosh δmx + δmx sinh δmx)],

τxy = −
∞∑

n=0

γn sin γnx[anγn sinh γny + bn(sinh γny + γny cosh γny)]−

−
∞∑

m=0

δm sin δmy[cmδm sinh δmx + dm(sinh δmx + δmx cosh δmx)].

(16)

A simple analysis shows the difference between the biharmonic problem and the correspond-
ing harmonic one. Considering, for example, the part of the expression for stress correspond-
ing to the first part of the stress function ϕ(I)(x, y), one can see that it is not possible to
make σx and τxy zero on the surface x = a simultaneously for real values of γn. Here the
general solution of the boundary-value problem does not transform directly to a sum of two
homogeneous solutions.

We shall discuss the specific properties of homogeneous solutions of the biharmonic prob-
lem in the next section. It will be expedient to specify some examples showing the importance
and usefulness of the concept of the general solution of boundary-value problems for the
construction of the analytical solutions. The geometry of a 2D elastic domain, which will
be considered as the first example, is shown in Figure 2. We consider the stress state of a
rectangle with a circular cavity. The position of the cavity may be arbitrary. The symmetrical
case is considered only for the sake of simplicity of formulation. If we want to get the solution
of the biharmonic problem for such a domain, we have to construct first of all the general
solution of the problem.
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Figure 2. Example of a domain having general solution of boundary problem for the biharmonic equation.

As the first part of such a solution for this symmetrical case one can directly use the
general solution for the solid rectangle given above. The biharmonic function ϕ1(x, u) =
ϕ(I)(x, y)+ϕ(II)(x, y), were the terms are determined by Equations (14) and (15), contain suf-
ficient functional arbitrariness to satisfy boundary conditions on straight parts of the boundary.
To be fully confident regarding the possibility to satisfy boundary conditions on the circular
cavity, we have to add to the biharmonic function ϕ1(x, y) the following biharmonic function

ϕ2(x, y) = ϕ2(r cos θ, r sin θ) = p0 log r+

+(p1r
−1 + q1r log r) cos θ +

∞∑
k=2

(pkr
−k + qkr

−k+2) cos kθ.
(17)

The structure of this equation reflects the high level of symmetry of the stress state in the
considered case. For more general cases one has to use the expression for the biharmonic
function in polar coordinates given in [10]. By a suitable choice of the values of the arbitrary
coefficients p0, pk, qk(k = 1, 2, . . . ), one can satisfy arbitrary (symmetrical) conditions for
radial and tangential stresses on a circular surface. Now other biharmonic boundary-value
problems can be distinguished as being tractable within the scope of the discussed method.
These may be different convex domains bonded by line segments and containing circular
cavities. Of course, the practical calculation to get a quantitative estimate of the stress-field
component may be not very simple and involve complicated infinite sets of algebraic equa-
tions. But is is important that the reduced series satisfy the biharmonic equation exactly and
estimating the accuracy of the solution can easily be done by comparing calculated stress
values with given boundary conditions. For some cases, as will be shown below, the method
considered here yields a practically exact solution.

Finally, the following should be noted regarding the method of constructing the general
solution of boundary-value problems for the biharmonic equation. The given general solution,
being a superposition of the two biharmonic functions (14) and (15), illustrates that the idea
of the general solution does not generate some unique analytical expression. In the specified
Equations (14) and 15), the constants γn and δm can be quite arbitrary. In the harmonic case
the unique form of the general solution arises when the general solution is transformed into
a set of homogeneous ones. It is obvious, that the same procedure can be applied to a special
case of boundary conditions for a biharmonic problem, when the stress function and its second
normal derivative are given on the boundary of a rectangle.
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It is possible to specify also some other types of boundary conditions, for which the homo-
geneous solution can be easily constructed for real values γn and δm in Equations (14) and (15).
However, for general boundary-value problems there is no way to simplify the procedure of
calculating the unknown coefficients by choosing γn and δm appropriately. When the stresses
are specified on the boundary of a rectangle, it is convenient to use a quasi-homogeneous
solution giving τ I

xy(a, y) = 0 and τ II
xy (x, b) = 0. This leads to the following parameter values:

γn = nπ/a, δm = mπ/b. (18)

Now an infinite set of algebraic equations has to be solved to determine the unknown coeffi-
cients of the series (14) and (15). The properties of the set and the solution algorithm will be
considered below.

4. Homogeneous solutions for the biharmonic problem

The simplicity and gracefulness of the harmonic-problem solution in the scope of the method
of homogeneous solutions stimulated much research towards the construction of homoge-
neous solutions of the biharmonic problem and a study of their properties.

The expressions for the stress components (16) in the constructed general solution of the
biharmonic problem give a basis for finding homogeneous solutions. Let us consider the first
part of the representation of the stress function (16) and the corresponding expressions for the
stresses σy and τxy in (16)

σy = −
∞∑

n=0

γ 2
n cos γnx[an cosh γny + bny sinh γny],

τxy = −
∞∑

n=0

γn sin γnx[anγn sinh γny + bn(sinh γny + γny cosh γny)].
(19)

One can see that the surfaces y = ±b will be free (σy = τxy = 0) if the separation constants
γn satisfy the equations

[an cosh γnb + bnb sinh γnb] = 0,

[anγn sinh γnb + bn(sinh γnb + γnb cosh γnb)] = 0.
(20)

This being a homogeneous set of algebraic equations for the coefficients an and bn, these
equalities lead to the following equation for these separation constant γn:

sinh 2γnb + 2γnb = 0. (21)

This is the well-known equation for eigenvalues for the homogeneous solutions in the theory
of elasticity [11].

Here it is necessary to pay attention to a basic difference in the approach to the construction
of homogeneous solutions for harmonic and biharmonic problems. In the first case, using the
first part of the representation for harmonic functions (5), we construct a complete system
at the surface y = ±b and, by the choice of separation constants, satisfy zero boundary
conditions at the surfaces x = ±a. In the second case, we use completeness and orthogonality
of the trigonometric functions cos γnx and sin γnx at the surfaces y = ±b to obtain a solution
with zero values of normal and tangential stresses on this surface. Thus, the set of the particular
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solutions corresponding to the eigenvalues of Equation (21) allow to satisfy arbitrary boundary
conditions for σx and τxy on the surfaces x = ±a.

At first sight, the formal distinction results in the important basic properties of the so-
lutions. First of all, it is necessary to pay attention to the fact that Equations (20) connect
values of the constants an and bn. As a result, the representation of the stresses σx and τxy

by eigenfunctions of homogeneous solutions contains only one sequence of arbitrary coeffi-
cients. Qualitatively the solution of the problem is that Equation (21) has no real roots (except
for trivial zero). Thus, the eigenvalues and eigenfunctions resulting from the homogeneous
solutions are complex. The constants bn should also be complex. In this connection the po-
tential possibility is kept to satisfy two boundary conditions at the surfaces x = ±a by a
suitable choice of real and imaginary parts of the constants bn. Equation (21) for eigenvalues
in the problem concerning the construction of homogeneous solutions for a boundary-value
problem in the theory of elasticity (biharmonic problem) was obtained for the first time by
Dougall [12]. Filon was the first researcher who realized the importance of the problem. His
first memoir [2] was devoted to studying properties of eigenfunctions of the homogeneous
solutions in 2D elasticity illustrating the essence of the problem, outlined a way towards its
solution, and gave concrete examples for the representation of polynomial functions by series
of such eigenfunctions. This brilliant work afforded a basis for many theoretical and applied
investigations. The available studies can be divided into two main groups.

The first question arising from using the homogeneous-solutions method for the bihar-
monic problem concerns an important mathematical problem. When the separation constants
γn are determined from Equation (21), the stresses σy and τxy , corresponding to the first
biharmonic function (14), vanish on the surfaces y = ±b. The idea behind the homogeneous-
solution method is that the boundary conditions (11) on the surfaces x = ±a have to be
satisfied by

an = bnb tan hγnb. (22)

Substitution of this expression in the corresponding series in (16) gives the following func-
tional equations for the boundary conditions (11):

∞∑
n=0

bnγn cos γna[cosh γny(2 − γnb tanh γnb) + γny sinh γny] = F2(y),

−
∞∑

n=0

bn sin γna[sinh γny(1 − γnb tanh γnb) + γny cosh γny] = Q2(y).

(23)

Mathematical substantiation of the ability to obtain the correct solution of this system of
equations is connected to the proof of double multiplicity of eigenfunctions determined by
the set of roots of the transcendental equation (21). That can be done within the scope of the
spectral theory of non-self-adjoint operators [13, 14]. Extensive mathematical investigations
have shown that, in principle, it is possible to solve these equations. For the concrete case of
the biharmonic problem the corresponding mathematical theorems were proved by scientists
of Vorovich’s scientific school [15, 16] in Rostov (Russia).

It is difficult to understand why so much effort to solve the biharmonic problem within the
scope of the method of homogeneous solutions is expended, when so simple and so effective
a solution as that of Mathieu exists. Nevertheless, much work on the development of methods
for the solution of Equation (21) has been performed.
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Very interesting results were obtained by Papkovich, which gave a basis for considering the
homogeneous-solutions method as a practical approach to getting quantitative characteristics
of the stress field. The discussion of the biharmonic problem for a rectangular domain was
given by Papkovich in [17]. He did much to popularize the method and for the development of
procedures for the determination of the coefficients similar to the procedure of Fourier. This
idea is very attractive and, in spite of the presence of mathematical problems in proving the
solvability of the system of functional equations (23), the method of homogeneous solutions
has often been used for the solution of concrete problems [19–21] and the development of
approximate theories for plates [22]. Methods of finding roots of Equation (22) have been
developed. The development of methods to transform the functional equations into algebraic
ones is also important. The practical use of the method of homogeneous solutions is often
based on collocation or mean-square-error minimization for the purpose of satisfying the
boundary conditions (see [23]). Such expansions have properties that are essentially different
from those of Fourier series. In the case of mixed-boundary-value problems, singularities
arise at corner points. This requires the series of eigenfunctions of homogeneous solutions to
be divergent on a finite interval (see [22]).

5. Important feature of the method of superposition

In the second section of this paper the general solution of the biharmonic boundary-value prob-
lem was constructed and analyzed. Taking into account the structure of the general solution
ϕ1(x, y) = ϕ(I)(x, y)+ϕ(II)(x, y) one can give a physical interpretation of this representation.
Every part of this sum is the general solution for a periodically deformed elastic strip. That
gave to this method the name of method of superposition. Such physical reasoning was used by
Lamé when he discussed the classical problem of an elastic parallelepiped in equilibrium. He
immediately noted [8] that superposition of three solutions for mutually perpendicular elastic
layers gives the solution of the problem of a parallelepiped in equilibrium. The understanding
of the fact that the actual satisfaction of the boundary conditions gives rise to an infinite system
of algebraic equations stopped subsequent development of this approach.

The simplest analysis of the expressions (16) lends basis to the conclusion about the pos-
sibility of satisfying arbitrary boundary conditions on the stresses on the sides of a rectangle.
To arrive at this conclusion we only use well-known properties of the Fourier series. It is
important to develop an effective procedure for the numerical implementation of the general
formula.

First of all one can see that the separation constants γn and δm in the general solution
are not determined uniquely. There are a number of ways to utilize this lack of uniqueness.
The simplest way is to construct partially homogeneous solutions. One can see from formula
(16) that the choice γn = nπ/a and δm = mπ/b gives the possibility to satisfy boundary
conditions for the tangential stresses on the surfaces x = ±a, y = ±b independently. The
choice γn = (2n+1)π/(2a) and δm = (2m+1)π/(2b) gives the solution with such properties
for the normal stresses. The detailed analysis will be given below for the first case.

The boundary conditions for the tangential stresses in (11) with respect to expressions (16)
lead to the following functional equations
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−
∞∑

n=0

γn sin γnx[anγn sinh γnb + bn(sinh γnb + γnb cosh γnb)] = Q1(x),

−
∞∑

m=0

δm sin δmy[cmδm sinh δma + dm(sinh δma + δma cosh δma)] = Q2(y).

(24)

Solution of these equations is a simple problem in mathematical analysis and after expanding
the function in the right part in a Fourier series, we obtain the equations

an = −bn

(
1

γn

+ b coth γnb

)
− 1

γn sinh γnb
q1n,

cm = −dm

(
1

δm

+ a coth δma

)
− 1

δm sinh δma
q2m,

(25)

where q1n and q2m are Fourier coefficients of the functions Q1(x) and Q2(y) determining the
distribution of the tangential stresses on the edges of the rectangle.

The boundary conditions for the normal stresses give rise to more complicated functional
equations, namely

−
∞∑

n=0

γ 2
n cos γnx[an cos γnb + bnγnb sinh γnb]+

∞∑
m=0

(−1)m[cmδ2
m cosh δmx + dmδm(2 cosh δmx + δmx sinh δmx)] = F1(x),

∞∑
n=0

(−1)n[anγ
2
n cosh γny + bnγn(2 cosh γny + γny sinh γny)]−

−
∞∑

m=0

δ2
m cos δmy[cm cosh δma + dmδma sinh δma] = F2(y).

(26)

Now in the functional equations terms from both parts of the general solution, formed by
the sum of the biharmonic functions (14) and (15), are present. However, each equation
contains the Fourier series with arbitrary coefficients that provides a basic element for the
exact satisfaction of the boundary conditions for sufficiently arbitrary functions F1(x) and
F2(y).

To transform the functional equations to algebraic ones, it is natural to use well-known
properties of Fourier series. To that end, it is necessary to use the following equations

cosh δmx = sinh δma

δma
+

∞∑
n=1

2δm(−1)n sinh δma

a(γ 2
n + δ2

m)
cos γnx,

x sinh δmx = cosh δma

δm

− sinh δma

aδ2
m

+
∞∑

n=1

2δm(−1)n cosh δma

(γ 2
n + δ2

m)
cos γnx+

+
∞∑

n=1

2(−1)n(γ 2
n − δ2

m) sinh δma

a(γ 2
n + δ2

m)2
cos γnx.

(27)

The same equations can be written for hyperbolic functions of y in the second equation in
(26). These equations give the possibility, by obvious means, to transform the functional equa-
tions (26) into Fourier series with respect to cos γnx and cos δmy. In view of the awkwardness
of the expressions, we shall give here only the appropriate series for the first equation.
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∞∑
n=0

bnγn

[
cosh γnb + γnb

sinh γnb

]
cos γnx +

∞∑
n=0

γ 2
n q∗

1n cosh γnb cos γnx+

+
∞∑

m=0

(−1)mdmδm

∞∑
n=1

4δmγ 2
n (−1)n sinh δma

a(γ 2
n + δ2

m)2
cos γnx−

−
∞∑

m=0

(−1)mq∗
2mδ2

m

[
sinh δma

δma
+

∞∑
n=1

2δm(−1)m sinh δma

a(γ 2
n + δ2

m)
cos γnx

]
=

=
∞∑

n=0

F1n cos γnx,

(28)

where q∗
1n = q1n/γn sinh γnb and q∗

2m = q2m/δm sinh δma. Some comments have to be made
before this equation can be transformed into an algebraic system. These comments concern
the case n = 0. Using the arbitrariness of the constants bn, we can introduce the new constant
B0 = γnbn(n → 0). Taking into account that q10 and q20 are equal to zero for reasons of field
symmetry, we can write the equation for the unbalanced part of the normal stresses σy as

2B0 −
∞∑

m=1

(−1)mq∗
2mδ2

m

sinh δma

δma
= F10. (29)

For other terms of the Fourier series the following consequence of the algebraic equations
follows from Equation (28)

bnγn

[
cosh γnb + γnb

sinh γnb

]
+

∞∑
m=1

(−1)mdmδm

4δmγ 2
n (−1)n sinh δma

a(γ 2
n + δ2

m)2
+

+γ 2
n q∗

1n cosh γnb −
∞∑

m=1

(−1)mq∗
2mδ2

m

2δm(−1)m sinh δma

a(γ 2
n + δ2

m)
= F1n.

(30)

Having done similar transformations with the second equation in (26), we may derive a
conjugate infinite system for the determination of the constants xn and ym.

xn = 1


(γnb)

∞∑
m=1

ym

4γ 2
n

a2(γ 2
n + δ2

m)2
+ βn,

ym = 1


(δma)

∞∑
n=1

xn

4δ2
m

b2(γ 2
n + δ2

m)2
+ αm,


(ξ) = 1

ξ

(
coth ξ + ξ

sinh2 ξ

)
.

(31)

The unknown parameters in this system are connected to the coefficients bn and dm by the
equations

xn = bn(−1)nγ 2
n b sinh γnb, ym = −dm(−1)mδ2

ma sinh δma. (32)

The constant terms βn and αm, though awkward, can be written according to the procedure
demonstrated in connection with Equation (30).

The traditionally used forms of the homogeneous-solution method also produce infinite
systems of algebraic equations. But it is not possible to get a corresponding system in so
simple and explicit a form as Equations (31). One particularly important advantage of the
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Figure 3. Scheme of loading of rectangle by sel-balanced forces.

method, called here the method of superposition, is that the system (31) can be investigated
and solved within the framework of the theory of infinite systems put forward by Koialovich
[7]. A detailed analysis of system (31), according to Koialovich’s theory, was carried out in
[24, Chapter 1]. The remarkable feature of Koialovich’s theory is that it provides an algorithm
for getting a practically exact estimate of all the infinitely many unknown parameters by
solving a finite system.

To illustrate the possibilities of the method of superposition considered here, a specific
boundary-value problem will be studied. To discuss some aspects of the Saint-Venant princi-
ple, the stress state of a square (a = b) caused by self-balanced normal forces will be studied.
The functions in the boundary conditions (11) will have the following values

F2(y) = σ0 cos δMy, F1(x) = Q1(x) = Q2(y) = 0. (33)

Concrete quantitative data will be calculated for several leading values of M. The considered
case for the first loading harmonic is shown in Figure 3. The infinite system for this specific
geometry and loading obtains the form

xn = 1


(nπ)

∞∑
m=1

ym

4n2

π2(n2 + m2)2
, n = 1, 2, . . .

ym = 1


(mπ)

∞∑
n=1

xn

4δ2
m

π2(n2 + m2)2
+ αm, m = 1, 2, . . .

αm

{
σ0/
(Mπ) m = M,

0, m �= M.

(34)

The use of the procedure developed by Koialovich gives the possibility to get lower and upper
bounds for the unknowns in an infinite system by solving a finite system. When the finite
system, containing ten unknowns, has been solved, the obtained estimates are those presented
in Table 1. The data correspond to the case M = 1. Here x̃n and ỹn give lower bounds for the
corresponding parameters. Correspondingly, Xn and Yn are the upper bounds. The estimate x∗

n

and y∗
n were obtained by the method of simple reduction when the infinite system was replaced

by a finite system with 20 unknowns. The values x̄n and ȳn are used in the procedures of the
quantitative estimate of the stress state. All values are normalized by the parameter σ0. In what
follows the quantitative data for the cases M = 1, 2, 3 will be presented.

In problems of this type the most interesting data concern the character of the stress state
near the loaded end of the rectangle. Such data allow to understand more deeply the important
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Table 1. Estimated values of the unknown coefficients in the infinite set (34).

n x̃n Xn ỹn Yn x∗
n y∗

n x̄n ȳn

1 3·5410 3·5412 1·1692 1·1694 3·5374 1·1657 3·5411 1·1693

2 0·9424 0·9431 1·7340 1·7347 0·9272 1·7188 0·9428 1·7343

3 1·1484 1·1498 1·7088 1·7103 1·1141 1·6746 1·1492 1·7094

4 1·2586 1·2612 1·6395 1·6422 1·1982 1·5791 1·2601 1·6405

5 1·3229 1·3270 1·5861 1·5502 1·2301 1·4933 1·3254 1·5874

6 1·3628 1·3685 1·5489 1·5546 1·2323 1·4184 1·3664 1·5505

7 1·3886 1·3961 1·5230 1·5305 1·2168 1·3512 1·3836 1·5249

8 1·4058 1·4152 1·5046 1·5140 1·1802 1·2889 1·4123 1·5068

9 1·4176 1·4290 1·4912 1·5026 1·1569 1·2305 1·4257 1·4938

10 1·4258 1·4392 1·4813 1·4946 1·1198 1·1753 1·4355 1·4840

>10 1·4312 1·4928 1·4312 1·4928 0 0 1·4598 1·4598

Figure 4. Distribution of displacements on the loaded surface.

features of the Saint-Venant principle. Let us first consider different cases of loading. The
values of the normal to the loaded surface component of displacement vector are shown in
Figure 4. Here u = uxσ0/2aG, where G is the shear modulus. The calculations were carried
out for a Poisson ratio of ν = 1/3.

Examining the data in Figure 4, we note that increasing the variability of external forces
with constant amplitude results in decreasing displacement amplitudes. The elastic surface
behaves as if it were more rigid. At the same time there is a significant difference between
the values of the displacements in the center of the loaded surface y = 0; the displacement
of the edge point almost twice exceeds that in the center point. Another interesting property
of the stress state of the rectangle near the loaded sites gives information on the distribution
of the stresses. The values of the normal stresses σy at x = a are shown in Figure 5. The
most important feature of these data is that the amplitudes of σy are essentially greater (by
25%) than the amplitude of the imposed stresses σx . This conclusion concerns all considered
harmonic cases (M = 1, 2, 3). When M increases, the point with maximal value of the stresses
drifts to the free surface y = 0. To characterize the stress state of a rectangle near the loaded
surface it is important also to note information on the stress σx . The decaying character of
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Figure 5. Distribution of the stress σy along loaded surface for the three cases of loading.

the stresses changes while moving away from the end: the decay rate along the unloaded
surface y = b is much slower than along the line y = 0. For example, the stress σx(a, a)

exceeds the stress σx(a, 0) by 30%. As an illustration of a specific biharmonic problem, it is
interesting to note that the stress σx(0·2a, a) exceeds the amplitude of the stress σx given by
the boundary conditions. The analysis of the quantitative data concerning the stress state near
the loaded surface of a rectangle permits to make an important comment concerning the Saint-
Venant principle. This principle is often invoked to justify the application of approximate
solutions for boundary-value problems with self-balanced loading on a part of the boundary.
It is assumed that the values of the stresses caused by such self-balanced loadings do not
exceed the maximum loading values anywhere in the interior. The data of our calculations on
the practically exact solution for a rectangle show that this is not correct. Self-balanced loading
can produce internal stresses exceeding the amplitudes of external loading. Understanding of
this is important to realize the essence of the Saint-Venant principle.

6. Conclusion

Consideration of the solutions of boundary-value problems for harmonic and biharmonic
equations forms a basis for explaining the idea of the general solution of the boundary-value
problem. This idea provides a way of constructing effective analytical methods of solution for
biharmonic boundary-value problems. To this end the properties of the well-studied eigen-
functions of harmonic problems are used to the full. A detailed consideration of harmonic and
biharmonic problems for a rectangle has given a basis to clarify both common properties and
the principal difference between two types of boundary-value problems.

The idea of the general solution is important to extend sufficiently the possibility to con-
struct analytical solutions of boundary-value problems. One can use well-known particular
solutions of biharmonic and other equations of mathematical physics in different coordinate
systems to construct general solutions of complicated boundary-value problems. One specific
example was given here, but ways of constructing many others are clear. The numerical im-
plementation of such solutions is comparatively complicated, but the use of such solutions
provides a simple way to control the accuracy of the solution.

The calculation for the case of a boundary-value problem for an elastic rectangle has
demonstrated in principle the possibility that we may get practically exact solutions. It is
possible to find an estimate for an infinite number of Fourier coefficients by solving a finite
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system of linear algebraic equations. As our calculations have shown, it is easy to attain an
accuracy of 1–2% for these coefficients.

For specific cases of self-balanced loadings, qualitative data for the stresses have been
given. It has been shown that self-balanced loadings can result in interior stresses exceeding
the amplitudes of the imposed load. To realize this is important for the understanding of the
salient aspect of the Saint-Venant principle and estimating errors arising from its application.
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